Energy Yielding Nutrients (Carbohydrates)

At the end of the class, students should be able to:

□ State the functions of carbohydrates.

List the dietary sources of carbohydrates.

State the Recommended Daily Intake (RDI).

Describe the classification of carbohydrates

Explain the mechanism of digestion, absorption, and storage of carbohydrates.

□Identify the deficiency and symptoms of deficiency.

□State the symptoms of excess carbohydrate intake.

Learning Objectives

Introduction

- Organic compounds made up of made of carbon, hydrogen and oxygen.
- The main source of energy.
- All carbohydrates are converted to glucose when digested → energy
- According to the Recommended Nutrient Intakes

 (RNI) for Malaysia 2017 and the Malaysian Dietary
 Guidelines (MDG), carbohydrates should contribute
 45-65% of total daily energy intake for an average
 Malaysian adult.

Introduction

- For example, with a daily energy requirement of 2,000 kcal, the recommended carbohydrate intake would be:
- 50% of total energy:
 - Energy from carbohydrates: 2,000 kcal × 0.45 = 900 kcal
 - Grams of carbohydrates: 900 kcal ÷ 4 kcal/g = 225 grams
- 65% of total energy:
 - Energy from carbohydrates: 2,000 kcal × 0.65 = 1,300 kcal
 - Grams of carbohydrates: 1,300 kcal ÷ 4 kcal/g = 325 grams
- Therefore, for a 2,000 kcal daily intake, the recommended carbohydrate consumption ranges from **225 to 325 grams** per day.

Each macro has a specific calorie amount per gram:

= 9 CALORIES

What are Calories?

The amount of energy released when nutrients are broken down is measured in units called calories.

The more calories a food has, the more energy it contains.

The fewer carbs the better. It's all the fault of bread and pasta. <u>Carbohydrates</u> <u>inevitably get fat.</u> Simple carbohydrates may not be good for you. With a carbohydrate-free diet, the body gets enough vitamins and minerals. Carbohydrates are actually the main energy for our bodies. During digestion, the main carbohydrates, starches, and sugars are broken down into glucose. <u>Glucose is the necessary</u> <u>energy for our brain and</u> <u>central nervous system.</u>

TRUTH

Reference Daily Intake (RDI)

 Table 1.1: Recommended number of servings for each food group based on 1500 kcal, 1800 kcal and 2000 kcal per day

Food group	Recommended number of servings			
	1500 kcal*	1800 kcal*	2000 kcal*	
Vegetable ¹	≥ 3	≥ 3	≥ 3	
Fruit ²	2	2	2	
Rice, other cereals, wholegrain cereal-based products and tubers ³	3	4	5	
Poultry/ Meat/ Egg ⁴	1	1	2	
Fish ⁵	1	1	1	
Legumes (combine bean, lentil and soy) ⁶	1	1	1	
Milk & milk products ⁷	2	2	2	
Fats /oils (including 1 serving from nuts and seeds) ⁸	6	8	9	
Sugar ⁹	1	1	2	

Notes:

Tips to remember, the more physically active you are, the more calories are required per day. However, if you are very sedentary, less calories are needed per day. ¹ Calorie free

²Based on 15 g carbohydrate and 60 kcal per serving;
³Based on 30 g carbohydrate, 4 g protein, 1 g fat and 150 kcal per serving;
⁴Based on 14 g protein, 8 g fat and 130 kcal per serving;
⁵Based on 14 g protein, 2 g fat and 70 kcal per serving;
⁶Based on 40 g carbohydrate, 14 g protein, 0.5 g fat and 220 kcal per serving.
⁷Based on 15 g carbohydrate, 8 g protein, 1 g fat and 90 kcal per serving;
⁸Based on 5 g fat and 45 kcal (including 1 serving of nuts & seeds = 5 g of fat and 65 kcal);
⁹Based on 15 g CHO and 60 kcal 1 serving of sugar = 3 teaspoons; 1 teaspoon = 5 g of carbohydrate and 20 kcal. Sources: Suzana *et al.* (2015); *RNI (2017)

RDI = Provides a **general guideline** for the amount of carbohydrates to be consumed daily based on a **2,000calorie diet**

General reference value used for food labeling and does not necessarily take into account individual factors such as age, gender, or activity level.

Recommended Dietary Allowance (RDA)

	Source	child	female	male	female	male	female	male	female	male	female	male	female	male
	of goal*	1 - 3	4 - 8	4 - 8	913	913	14-18	14-18	19-30	19-30	31-50	31-50	51+	51+
Calorie level(s)		1000	1200	1400,	1600	1800	1800	2200, 2800,	2000	2400, 2600,	1800	2200	1600	2000
assessed				1600				3200		3000				
Macronutrients														
Protein, g	RDA	13	19	19	34	34	46	52	46	56	46	56	46	56
Protein, % kcal	AMDR	520	1030	1030	1030	1030	1030	1030	1035	1035	1035	1035	1035	1035
Carbohydrate, g	RDA	130	130	130	130	130	130	130	130	130	130	130	130	130
Carbohydrate, %kcal	AMDR	4565	4565	4565	4565	4565	4565	4565	4565	4565	4565	4565	4565	4565
Dietary Fiber, g	14g/1000kcal	14	16.8	19.6	22.4	25.2	25.2	30.8	28	33.6	25.2	30.8	22.4	28
Total fat, %kcal	AMDR	30-40	25-35	25-35	25-35	25-35	25-35	25-35	20-35	20-35	20-35	20-35	20-35	20-35
Saturated fat, %kcal	DG	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
Linoleic acid, g	AI	7	10	10	10	12	11	16	12	17	12	17	11	14
Linolenic acid, g	AI	0.7	0.9	0.9	1	1.2	1.1	1.6	1.1	1.6	1.1	1.6	1.1	1.6

Table E3.1.A4. Nutritional goals for each age/sex group used in assessing adequacy of USDA Food Patterns at various calorie levels

RDA = Provide **minimum daily amount** of a nutrient that **most people need** to meet their basic health needs.

* RDA- Recommended Dietary Allowance, AI= Adequate Intake, UL = Tolerable Upper Intake Level, AMDR = Acceptable Macronutrient Distribution Range,

DG = 2010 and 2015 Dietary Guidelines recommended limit; 14g fiber per 1000 kcal = basis for AI for fiber.

- RDA is set at **130 grams per day**.
- Based on the minimum amount of carbohydrates required to meet the needs of the brain (to function properly).
- Individual adjustments are made for factors such as activity level, health conditions, and total energy needs.

Functions of Carbohydrates

Primary Energy Source

Carbs broken down into

glucose, which is used by

Fuel for Brain The only carbohydrate-

dependent organ in the

body

Promotes Digestive Health Dietary fiber supports bowel movements, prevents constipation, and lowers cholesterol.

Protein-Sparing Effect Prevents the use of proteins for energy production.

cells for energy.

Improve muscle mass Glycogen stored in muscles

Regulator of mood

Increases serotonin production in the brain, contributing to feelings of happiness and relaxation

Structural Support Cellulose, form structural components in plants cell wall

Dietary Sources

STARCHY VEG

Butternut Squash Potatoes Pumpkin Sweet Potatoes

LEGUMES

Beans Chickpeas Lentils Peas and Pulses Amaranth Barley Buckwheat Oats Quinoa Rice Sorghum Spelt Sprouted Grains

(You can bump up your protein intake with legumes and whole grains.)

WHOLE GRAIN FRUIT

> (Fresh, not dried) Apples Apricots Bananas Beries and Cherries Peaches Figs Grapefruit Grapes Guavas Kiwifruit Lemons and Limes

FRUIT (continued)

Mangoes Melons Nectarines Oranges Pears Persimmons Pineapple Plums Pomegranates Watermelon

Dietary Sources

Ice Cream

Eating carbs is unhealthy for your weight.

Only simple carbs are bad. Complex carbs are healthy.

Fact

CARBS

Classification of Carbohydrates

Based on digestibility

Simple Carbohydrates

- Single or double sugar molecules (monosaccharides/disaccharides)Simple carbohydrates
- Quick digestion and absorption
- Low in fiber, vitamins, and minerals (especially in processed forms)
- Causes rapid spikes in blood sugar levels, weight gain

Complex Carbohydrates

- Long chains of sugar molecules (polysaccharides)
- Slower digestion and absorption
- Higher in fiber, vitamins, and minerals (especially in whole foods)
- Causes more stable blood sugar levels, helps with digestion

SIMPLE CARBS

Brown rice Whole wheat bread

COMPLEX CARBS

Cookies

Ice cream

Sugary cereals

bread

Cakes

Candy

Non-diet sodas

Sweetened drinks

Starchy vegetables

Fruit

Lentils

Oats

Quinoa

Sweet potatoes Chia seeds

Beans

Monosaccharides

- The simplest form of carbohydrates- consisting of just one sugar unit.
- Examples:
 Glucose (main energy source for the body)
 Fructose (found in fruits)
 Galactose (found in milk
- They are quickly absorbed into the bloodstream and provide immediate energy.
- They do not need to be broken down further before absorption.

Disaccharides

- These carbohydrates consist of **two monosaccharides** linked together.
- Examples:

Sucrose (table sugar) – made of glucose and fructose
 Lactose (milk sugar) – made of glucose and galactose
 Maltose (malt sugar) – made of two glucose unit

 Disaccharides must be broken down into monosaccharides before they can be absorbed by the body.

Sucrose – Table sugar

- Made from sugar cane or sugar beets
- Occur naturally in honey, maple syrup, carrots and sweet fruits

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

TABLE 5.1 Nutritional Comparison of Selected Sweeteners

Sugar/Syrup 1 Tablespoon	Water 96	Kcal	Protein g	Carb 9	Vit. C mg	Calcium mg	Folate mcg	Potassium mg	lron mg	Zinc mg
Honey	17	64	0	17	0.1	1	0	11	0.09	0.05
Raw sugar	2	46	0	12	0	10	0.125	42	0.23	0.03
Brown sugar	<1	36	0	9	0	8	0	33	0.18	0.02
White granulated sugar	0	48	0	13	0	0	0	0	0	0

Less bad

DIFFERENT NAMES FOR SUGAR

Agave Nectar **Barley Malt Beet Sugar** Blackstrap Molasses **Brown Sugar** Cane Juice Cane Syrup Caramel Corn Syrup **Confectioner's Sugar** Carob Syrup Date Sugar Dextran Dextrose Ethyl Maltol Fructose Fruit Juice Glucose **Golden Sugar**

Granulated Sugar Grape Sugar High Fructose Corn Syrup Honey **Invert Sugar** Lactose Malt Maltodextrin Mannitol Maple Syrup Molasses **Organic Raw Sugar Powdered Sugar Refiner's Syrup Rice Syrup** Sorbitol Sorghum Syrup Sucrose **Turbinado Sugar**

Worse

Polysaccharides

- These are made up of three or more sugar units linked together in long chains.
- Examples:

Starch (found in plants like potatoes, rice, and wheat)
 Glycogen (Storage form of glucose, stored in muscles and liver, serves as a quick energy reserve)

Cellulose (fiber in plant cell walls, important for digestion but not digestible by humans)

• They are slowly digested and provide a steady release of energy.

Fibers

- A type of carbohydrate that cannot be broken down into sugar molecules.
- Human digestive enzyme lack the capability to hydrolyze certain bonds present in fiber molecules.
 - lack enzyme cellulase
 - without cellulase, cannot convert fibers into monosaccharides
- Primarily found in plants (Vegetable & Fruits)
- Passes through the body essentially undigested.

Insoluble Fibers

- Does not dissolve in water
- Pass through the digestive tract mostly intact
- Prevent constipation
- Aiding in stool bulk

Soluble Fibers

- Dissolve in water, form a gel-like substance
- Can be fermented by gut bacteria
- Slows down digestion (lead to feeling fullness)
- Support gut bacteria
- Help in weight loss
- Helps with constipation and diarrhea
- Provide colon protection

Soluble Fiber

Dissolves in water to form a gel-like substance. Helps with constipation and diarrhea.

Food Sources:

- · Oats and oatmeal
- Barley
- Legumes (beans,

lentils, peas,

chickpeas,

soybeans)

- Chia seeds
- Apples and applesauce
- Pears
- Oranges

- Grapefruit
 Bananas >
- Berries
- Broccoli
- Carrots
- Brussels sprouts
- Avocado 🚵
- Sweet potato
- Psyllium husk
- Fiber supplements

Insoluble Fiber

Traps and holds onto water pulled from intestines. Helps with constipation.

Food Sources:

- Ground flax Fruits and seeds (flaxmeal) vegetables
- Wheat bran
- Nuts 67
- Seeds *P*
- Cauliflower ()
- Green beans
- Leafy greens (spinach, kale,
 - collard)
- · Potatoes with skin

Digestion, Absorption & Storage

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Digestion

- 1. Mouth : Digestion of carbohydrates begins in the mouth. The enzyme salivary amylase starts breaking down starches into maltose (a disaccharide).
- 2. **Stomach**: In the stomach, the acidic environment decrease the action of salivary amylase, so no further digestion occurs here.
- 3. **Small Intestine**: Once the partially digested food enters the small intestine, the pancreatic amylase continues breaking down starches into disaccharides (maltose, sucrose, lactose). Other enzymes that break disaccharides into monosaccharides.

Maltose	\rightarrow	Glucose + Glucose
Lactose	\rightarrow	Glucose + Galactose
Sucrose	\rightarrow	Glucose + Fructose

Absorption

- The monosaccharides are absorbed by the villi ((finger-like projections) in the small intestine.
- Food molecules are transferred from the central space in small intestine into the villi.
- Once absorbed, the monosaccharides are transported via the bloodstream to the liver for further processing.

Transport to the liver

- Glucose metabolism
- Convert glucose
 into glycogen (store
 in liver and muscle)

Conversion into Fat

 Excessive glucose converted into fafty
 acids (store in adipose tissue)

Uptake by cells

- Convert glucose into energy

If there's still too much glucose in the blood, the body releases **insulin** to help move the glucose into cells and keep blood sugar levels balanced.

Homesostasis Blood sugar level

- Liver: Glucose is either stored as glycogen or released into the bloodstream, depending on the body's needs.
- **Muscles**: Glycogen is also stored in muscles for energy during physical activity.
- Excess Glucose: When the liver and muscles reach their glycogen storage capacity, excess glucose is converted into fat and stored in adipose tissue.

Deficiency of Carbohydrates

- Carbohydrate deficiency occurs when the body does not receive enough carbohydrates to meet its energy needs (Hypoglycemia)
- Symptoms:
 - Fatigue: Due to the lack of glucose, the body has less energy for daily activities.
 - Muscle Weakness: Low glucose availability can lead to muscle weakness and lack of endurance.
 - Ketosis: In severe carbohydrate deficiency, the body starts breaking down fats for energy, producing ketones, which can lead to ketoacidosis.
 - Poor Concentration: The brain relies on glucose for energy, and low carbohydrate intake can impair cognitive function.
 - Irritability and Mood Swings: The brain's glucose needs are not met, leading to irritability or mood changes.

Excessive Carbohydrates

- Consuming an excessive amount of carbohydrates can lead to an imbalance in energy storage and metabolism.
- Symptoms of Excess:
 - Weight Gain: Excess carbohydrates that are not used for energy are converted into fat and stored in the body.
 - Increased Blood Sugar Levels: Overconsumption of carbohydrates can lead to insulin resistance, increasing the risk of type 2 diabetes.
 - Fatty Liver Disease: Excessive carbohydrate intake, especially from sugary foods, can lead to fat accumulation in the liver
 - Tooth Decay: High carbohydrate intake, especially from sugary foods, can increase the risk of dental cavities due to the fermentation of sugars by bacteria in the mouth.
 - Digestive Problems: Excess carbohydrates, particularly those from fiber-rich foods, can cause bloating, gas, or diarrhea in some individuals.

Category	Fasting Glucose (Venous plasma)	Random Glucose (Venous plasma)	HbA1c
Normal	<6.1 mmol/L	<7.8 mmol/L	≤ 5.6%
Pre-diabetic	6.1-6.9 mmol/L	7.8-11 mmol/L	5.7%-6.2%
Type 2 Diabetes Mellitus	≥7.0 mmol/L	≥11.1 mmol/L	≥ 6.3%

Glycemic Index

Low GI (<55), Medium GI (56-69) and High GI (70>)

Grains / Starchs		Vegetables		Fruits		Dairy		Proteins	
Rice Bran Bran Cereal Spaghetti Corn, sweet Wild Rice Sweet Potatoes White Rice Cous Cous Whole Wheat Bread Muesli Baked Potatoes Oatmeal Taco Shells White Bread Bagel, White	27 42 42 54 57 61 64 65 71 80 85 87 97 100 103	Asparagus Broccoli Celery Cucumber Lettuce Peppers Spinach Tomatoes Chickpeas Cooked Carrots	15 15 15 15 15 15 15 33 39	Grapefruit Apple Peach Orange Grape Banana Mango Pineapple Watermelon	25 38 42 44 46 54 56 66 72	Low-Fat Yogurt Plain Yogurt Whole Milk Soy Milk Fat-Free Milk Skim Milk Chocolate Milk Fruit Yogurt Ice Cream	14 14 27 30 32 32 35 36 61	Peanuts Beans, Dried Lentils Kidney Beans Split Peas Lima Beans Chickpeas Pinto Beans Black-Eyed Beans	21 40 41 45 46 47 55 59
Conservation of the									_

